Кривая нормального распределения

Содержание
  1. Нормальное распределение (Гаусса) в Excel
  2. Нормальное распределение в статистике
  3. Стандартное нормальное распределение
  4. Таблица нормального распределения
  5. Нормальное распределение в Excel
  6. Функция НОРМ.СТ.РАСП
  7. Нормальное распределение
  8. Плотность вероятности нормального распределения
  9. Распределение Гаусса
  10. Нормальное распределение — среднее 0 и отклонение 1?
  11. Свойства функции распределения
  12. Функция распределения
  13. Управление эффективностью: кривая нормального распределения
  14. Нормальное распределение непрерывной случайной величины
  15. Нормальное распределение: теоретические основы
  16. Открытый интервал
  17. Закрытый интервал
  18. Приближенный метод проверки нормальности распределения
  19. Нормальное распределение и расчёты в MS Excel
  20. Решить задачу самостоятельно, а затем посмотреть решение
  21. Решим ещё одну задачу вместе
  22. Нормальное распределение вероятностей
  23. правило «трех сигм»
  24. понятие о центральной предельной теореме
  25. Нормальное распределение, нормальная кривая
  26. Нормальная кривая
  27. Пример задач на нормальное распределение вероятности
  28. Одномерное нормальное распределение
  29. Графики одномерного нормального распределения
  30. Вычисления процентных точек нормального распределения с помощью вероятностного калькулятора STATISTICA
  31. Двумерное нормальное распределение
  32. Графики плотности двумерного нормального распределения

Нормальное распределение (Гаусса) в Excel

Кривая нормального распределения

В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.

Нормальное распределение в статистике

История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию биномиального распределения еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой.

Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Также и с нормальным распределением.

Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая. У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

Формула состоит из двух математических констант:

π – число пи 3,142;

е – основание натурального логарифма 2,718;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);

σ2 – дисперсия;

ну и сама переменная x, для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии (σ2). Кратко обозначается N(m, σ2) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:

Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

P(a ≤ X < b) = Ф(b) – Ф(a)

Стандартное нормальное распределение

Нормальное распределение зависит от параметров средней и дисперсии, из-за чего плохо видны его свойства. Хорошо бы иметь некоторый эталон распределения, не зависящий от масштаба данных. И он существует.

Называется стандартным нормальным распределением.

На самом деле это обычное нормальное нормальное распределение, только с параметрами математического ожидания 0, а дисперсией – 1, кратко записывается N(0, 1).

Любое нормальное распределение легко превращается в стандартное путем нормирования:

где z – новая переменная, которая используется вместо x;
m – математическое ожидание;
σ – стандартное отклонение.

Для выборочных данных берутся оценки:

Среднее арифметическое и дисперсия новой переменной z теперь также равны 0 и 1 соответственно. В этом легко убедиться с помощью элементарных алгебраических преобразований.

В литературе встречается название z-оценка. Это оно самое – нормированные данные. Z-оценку можно напрямую сравнивать с теоретическими вероятностями, т.к. ее масштаб совпадает с эталоном.

Посмотрим теперь, как выглядит плотность стандартного нормального распределения (для z-оценок). Напомню, что функция Гаусса имеет вид:

Подставим вместо (x-m)/σ букву z, а вместо σ – единицу, получим функцию плотности стандартного нормального распределения:

График плотности:

Центр, как и ожидалось, находится в точке 0. В этой же точке функция Гаусса достигает своего максимума, что соответствует принятию случайной величиной своего среднего значения (т.е. x-m=0). Плотность в этой точке равна 0,3989, что можно посчитать даже в уме, т.к. e0=1 и остается рассчитать только соотношение 1 на корень из 2 пи.

Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже.

Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения.

Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные.

Последнее свойство широко известно под названием правило трех сигм для нормального распределения.

Функция стандартного нормального распределения позволяет рассчитывать вероятности.

Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1, т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы. 

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец 0, т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен). 

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z), т.е. плотность для 1 тождественна плотности для -1, что отчетливо видно на рисунке.

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z.

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения.

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

Это факт показан на картинке:

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z). Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z), то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

Для наглядности можно взглянуть на рисунок.

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z.

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Рисунок ниже.

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z: 1,64, 1,96 и 3.

Как понять смысл этих чисел? Начнем с z=1,64, для которого табличное значение составляет 0,4495. Проще всего пояснить смысл на рисунке.

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от 0 до 1,64, равна 0,4495. При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64, т.к.

окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для проверки статистических гипотез и расчета доверительных интервалов.

Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Еще одно интересное и часто используемое табличное значение соответствует z=3, оно равно по нашей таблице 0,4986. Умножим на 2 и получим 0,997. Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Нормальное распределение в Excel

В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.

Функция НОРМ.СТ.РАСП

Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ(z) или вероятности Φ(z) по нормированным данным (z).

=НОРМ.СТ.РАСП(z;интегральная)

z – значение стандартизованной переменной

интегральная – если 0, то рассчитывается плотность ϕ(z), если 1 – значение функции Ф(z), т.е. вероятность P(Z

Источник: https://statanaliz.info/statistica/teoriya-veroyatnostej/normalnoe-raspredelenie-v-excel/

Нормальное распределение

Кривая нормального распределения
 КАЛЬКУЛЯТОР ТАБЛИЦА |

Вероятность, что подброшенная монета упадёт орлом вверх 50%, что при броске шестигранного кубика выпадет 4 — 16,7%, что завтра на кого-нибудь упадёт метеорит — 0.00000000294%.

Это простые примеры, достаточно разделить количество желаемых событий на общее количество случаев и мы получаем вероятность события, но когда результаты эксперимента могут быть не только орлом или решкой (что эквивалентно да/нет), а большим набором данных.

Например, вес батона хлеба, если мы возьмём в магазине 1000 буханок хлеба и взвесим каждую, то мы узнаем, что на самом деле батон не весит 400 грамм, результаты будут варьироваться в диапазоне 384-416 грамм (допуск разброса веса предусмотрен ГОСТом).

Если Вы построите график «Количество буханок — Вес», то график будет иметь форму напоминающую колокол, что-то похожее на следующий график:

Плотность вероятности нормального распределения

Такую форму график получит потому, что большинство значений близко к 400. Это — пример нормального распределения, множество событий имеют закон нормального распределения, например, вес или рост для определённого возраста, или среднее время Вашего похода до магазина и многие другие события также подчиняются закону нормального распределения.

Вот так работают маркетологи: проводят опрос 1000 человек и получают представление о всём населении

В случае таблицы Вы имеете дело с дискретными данными, т.е. для каждого веса есть определённая вероятность, но в случае графика дело немного меняется, теперь мы говорим не о 1000 буханок, которые мы взвесили, а обо всех буханках в мире сразу! Зачем? Что бы не взвешивать все буханки.

Имея закон распределения, который мы получили взвесив 1000 буханок (мы могли взвесить 100, 200, 500, сколько угодно), мы можем предположить, что сколько бы мы буханок не взяли, замерив их, мы получим ту же форму колокола.

Используя термины статистики, все буханки хлеба — это генеральная совокупность, 1000 замеренных буханок — выборка.

Теперь, возьмём одну буханку хлеба, какова вероятность, что её вес будет между 390г и 400г?

Вероятность события между a и b:

P(a ≤ X ≤ b) = P(X ≤ b) — P(X ≤ a)

Распределение вероятности — это функция, в которой для каждого события Х присваивается вероятность p, что событие произойдёт

Распределение Гаусса

Нормальное распределение получило своё название абсолютно справедливо: по статистике, большинство событий происходят именно с вероятностью нормального распределения, но что это значит? Это означает, например, что когда Вы видите на упаковке хлеба обозначение «Вес: 400±16г» — вес батона имеет нормальное распределение со средним значением 400г и стандартным отклонением 16г.

Таблица нормального распределения — это затабулированные значения функции нормального распределения.

Для нахождения вероятности события Z0 можно воспользоваться таблицей нормального распределения ниже. На пересечении строк (n) и столбцов (m) находится значение вероятности n+m.

Z0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
0.5000.5040.5080.5120.5160.5200.5240.5280.5320.536
0.5400.5440.5480.5520.5560.5600.5640.5680.5710.575
0.5790.5830.5870.5910.5950.5990.6030.6060.6100.614
0.6180.6220.6250.6290.6330.6370.6410.6440.6480.652
0.6550.6590.6630.6660.6700.6740.6770.6810.6840.688
0.6920.6950.6990.7020.7050.7090.7120.7160.7190.722
0.7260.7290.7320.7360.7390.7420.7450.7490.7520.755
0.7580.7610.7640.7670.7700.7730.7760.7790.7820.785
0.7880.7910.7940.7970.7990.8020.8050.8080.8110.813
0.8160.8190.8210.8240.8260.8290.8320.8340.8370.839
0.8410.8440.8460.8490.8510.8530.8550.8580.8600.862
0.8640.8670.8690.8710.8730.8750.8770.8790.8810.883
0.8850.8870.8890.8910.8920.8940.8960.8980.9000.901
0.9030.9050.9070.9080.9100.9110.9130.9150.9160.918
0.9190.9210.9220.9240.9250.9260.9280.9290.9310.932
0.9330.9340.9360.9370.9380.9390.9410.9420.9430.944
0.9450.9460.9470.9480.9500.9510.9520.9530.9540.955
0.9550.9560.9570.9580.9590.9600.9610.9620.9630.963
0.9640.9650.9660.9660.9670.9680.9690.9690.9700.971
0.9710.9720.9730.9730.9740.9740.9750.9760.9760.977
0.9770.9780.9780.9790.9790.9800.9800.9810.9810.982
0.9820.9830.9830.9830.9840.9840.9850.9850.9850.986
0.9860.9860.9870.9870.9880.9880.9880.9880.9890.989
0.9890.9900.9900.9900.9900.9910.9910.9910.9910.992
0.9920.9920.9920.9930.9930.9930.9930.9930.9930.994
0.9940.9940.9940.9940.9950.9950.9950.9950.9950.995
0.9950.9960.9960.9960.9960.9960.9960.9960.9960.996
0.9970.9970.9970.9970.9970.9970.9970.9970.9970.997
0.9970.9980.9980.9980.9980.9980.9980.9980.9980.998
0.9980.9980.9980.9980.9980.9980.9990.9990.9990.999
0.9990.9990.9990.9990.9990.9990.9990.9990.9990.999
0.9990.9990.9990.9990.9990.9990.9990.9990.9990.999
0.9990.9990.9990.9990.9990.9990.9990.9990.9991.000
Таблица 1. Таблица нормального распределения. Красным выделены часто используемые значения при выборе критической области

Нормальное распределение — среднее 0 и отклонение 1?

Не только. График нормального распределения построен для среднего значения ноль и стандартного отклонения единица, т.е. 0±1. Но если Ваши среднее и отклонение отличаются от нуля и единицы, то к Вашим услугам следующая формула:

Z = (X — μ) / σ

Где μ и σ — среднее значение и стандартное отклонение для Вашего распределения соответственно, а X — величина, для которой Вы хотите узнать вероятность. Возвращаясь к примеру с батоном хлеба — для того, что бы узнать, какова вероятность, что батон будет весить меньше 396 грамм — необходимо подставить в формулу значения X=396, μ = 400, σ = 16:

Z = (396 — 400) / 16 = -0.25

Далее, по таблице необходимо найти значение для Z. Как для Z = -0.25, так и для Z = 0.25 это будет 0,5987 (нормальное распределение симметрично, поэтому значение вероятности определяется для абсолютного значения Z: график симметричен относительно оси Y, поэтому значение вероятности не зависит от знака X)

Свойства функции распределения

  • Симметрична относительно центра (среднее значение — математическое ожидание μ)
  • Мода и медиана равны математическому ожиданию μ

Функция распределения

Функция распределения предназначена для того, что бы определить, какова вероятность, что величина X меньше или равна некоторого числа x.

На примере батона из первого абзаца: если мы хотим узнать, какова вероятность, что батон будет весить меньше 410 грамм, то, воспользовавшись формулой приведения, получим Z=0.63 и значение P(X

Источник: https://k-tree.ru/tools/statistics/normal.php

Управление эффективностью: кривая нормального распределения

Кривая нормального распределения

Сегодня многие консультанты и специалисты в сфере HRM говорят об управлении эффективностью, дают различные советы и делают выводы «космического масштаба» о том, как ее повысить. Но какова суть эффективности, ее природа? Каким правилам и законам она подчиняется?

Чем более глубокими теоретическими знаниями мы обладаем, тем более совершенна наша практическая деятельность. Действительно, управлять эффективностью можно только в том случае, если мы глубоко понимаем природу этого феномена.

Эффективность — это результативность процесса, операции, проекта. Она определяется как отношение полученного результата (достигнутого эффекта) к затратам — расходам на его получение.

Для оценки этого параметра деятельности используется специальный математический аппарат (коэффициенты, формулы, методы расчета и т. д.).

Использование метрик эффективности позволяет эйчарам разработать определенный алгоритм собственной работы.

Эффективность деятельности компании в целом зависит от эффективности работы каждого ее сотрудника. В крупном коллективе работают разные люди — естественно, они демонстрируют различную результативность.

Количество людей с высокой/ средней/ низкой результативностью труда — математики используют термин «распределение» — подчиняется закономерности, которую называют кривой нормального распределения.

Закон нормального распределения сформулировал немецкий математик Фридрих Гаусс еще в начале XIX века. Суть его состоит в том, что заметные отклонения встречаются значительно реже, чем средние величины. Закон Гаусса начинает действовать в группе: чем больше элементов, тем нагляднее проявляется «нормальность» распределения (шире разброс крайних значений и более выражен «горб» средних).На рисунке 1 изображена кривая нормального распределения — гауссиана. Вся живая и неживая природа подчиняется этому закону. Например, в каждом классе любой школы (и во всех школах мира) подавляющее большинство составляют «середнячки», часть учеников учится немного лучше и немного хуже, и несколько процентов детей — очень способны (еще реже — одарены, талантливы) и столько же — плохо обучаемы и не имеют никакой мотивации к учебе.

Рис. 1. Кривая нормального распределения Гаусса

Но констатации факта, что наиболее эффективных сотрудников (в любом коллективе!) примерно столько же, сколько низкопроизводительных, а большая часть работников — «середнячки», недостаточно для того, чтобы управлять результативностью.

Следствия закона нормального распределения могут показаться парадоксальными: в любом коллективе будут лучшие и худшие.

Всегда! Иначе теряет смысл само определение «лучший»… Это не значит, что если уволить лодырей, то «разленятся» другие сотрудники, скорее — повысятся критерии оценки эффективности для этого коллектива.

Любая система стремится к равновесию, и смысл управления в том, чтобы устанавливать это равновесие на все более высоком «базовом» уровне…

Если мы посмотрим на результаты оценки сотрудников реальной компании (по критерию эффективности в достижении поставленных целей), то увидим, что они «выстраиваются» в гауссиану (рис. 2): в группу III входят 5% самых результативных сотрудников, в группу I — 5% самых неэффективных, а остальные (группа II) демонстрируют средние показатели.

Рис. 2. Распределение сотрудников компании по показателю «эффективность» описывается кривой нормального распределения

Далее рассмотрим графики на рисунке 3. Отсутствие «передовиков производства» (вариант на рис. 3а), «отстающих» (рис. 3б) или и тех и других одновременно (рис. 3в) — утопия.

Если статистика противоречит закону Гаусса, значит, у компании есть серьезные проблемы с организацией труда, а также неудачно выстроена система оценки результативности деятельности.

Скорее всего, работа на конкретных рабочих местах плохо описана, неправильно пронормированна и неэффективно стимулируется (то есть нормы выработки, рабочие задания завышены или занижены, а система оплаты не мотивирует к тому, чтобы люди прикладывали больше усилий).

Возможно также, что в этих компаниях неудачно выбрана система показателей для оценки результатов (например, оценивается качество продукции, а реально оплачиваются объемы ее изготовления) и/или есть серьезные управленческие ошибки с постановкой целей и определением приоритетности задач.

Рис 3. Графики распределения сотрудников компании по показателю «эффективность»

Особый практический интерес (исходя из собственного опыта) представляет ситуация «все хорошие» (рис. 3в). Когда дело доходит до периодической оценки сотрудников, многие линейные менеджеры подходят к подчиненным «уравнительно», мотивируя свои решения «благими намерениями»: чтобы не осложнять отношения в коллективе, не провоцировать конфликты.

Дело не только в том, что они не хотят задуматься над тем, что каждый человек уникален по своему, и работать одинаково «хорошо» все не могут.

Это проблема качества управления: справедливая оценка ставит перед сотрудниками реалистичные цели, она сама по себе мотивирует людей, а значит, работает на повышение общей эффективности подразделения и компании в целом.

Впервые с подобным подходом я столкнулся при внедрении периодической системы оценки деятельности сотрудников одного из предприятий тяжелой промышленности: начальник одного из цехов утверждал, что у него все работают хорошо, и он не может кого-либо выделить.

О каком развитии, повышении эффективности может идти речь, если руководитель не может отличить плохую работу от хорошей, а хорошую от отличной? Он сам лишает своих подчиненных возможности развиваться (и, как следствие, препятствует повышению эффективности их труда).

Нередко затратив огромные средства на внедрение системы управления эффективностью, компании не получают ожидаемого результата… Вывод один: пока линейные менеджеры не будут правильно применять инструменты и методы управления сотрудниками, которые им предлагают коллеги из службы по управлению персоналом, явного сдвига в повышении эффективности деятельности организации не будет.

Вернемся к закону Гаусса. Что можно сделать для повышения эффективности компании? Как перевести сотрудников из разряда лодырей хотя бы в разряд «середнячков»? Я предлагаю вниманию коллег проверенные на практике рекомендации:

  1. Работать нужно со всем персоналом, повышая результативность каждого. Успеха можно добиться только в масштабах всей компании.

    Если сосредотачивать внимание на «воспитании» самых неэффективных работников или отдавать предпочтение лишь самым успешным, то в результате можно повысить только их личную эффективность.

    Затраты ресурсов и усилий в данном направлении приведут к частичным изменениям (рис. 4).

Рис. 4. Работа только с одной категорией сотрудников приведет к частичным изменениям

  1. Цель внедрения системы управления эффективностью — увеличить «норму для середнячков». Если менеджеры будут уделять внимание всему коллективу, то в итоге сохранятся и передовики, и относительно «отстающие» (для данного подразделения на этом этапе развития), но показатели результативности, которых достигают средние работники, — повысятся.

Отражение этого прогресса мы видим на рисунке 5: кривая распределения показателей эффективности сотрудников сместилась вправо по оси Х. По-прежнему 5% работников показывают лучшие в своей группе результаты, 5% — худшие, а подавляющее большинство, как и раньше, демонстрирует средние показатели. Но теперь:

  • самые слабые сотрудники работают на уровне «середнячков»;
  • «средние» уже подтянулись до уровня лидеров предыдущего периода;
  • лидеры достигли суперэффективности.

Рис. 5. Результат: повышение эффективности всей компании

Так все — каждый сотрудник, подразделение и компания в целом — выходят на новый уровень развития.

«Сдвинуть гору» с места, конечно, очень и очень непросто.

Этого можно добиться, систематически проводя грамотную управленческую работу со всем персоналом, а не только с лучшими (кадровым резервом) или худшими.

Для каждой группы сотрудников следует разрабатывать программы повышения эффективности. Непременное условие — они должны охватывать весь коллектив, тогда закон Гаусса будет работать на компанию!

Хочу также акцентировать внимание читателей на том, что управление эффективностью компании — это не разовое событие или мероприятие, а процесс, ежедневный кропотливый труд линейных руководителей и эйчаров.

Поэтому топ-менеджеры каждой компании, перед тем как стать на стезю управления эффективностью, должны ответить на вопрос: «Готовы ли мы инвестировать в эффективность? Готовы ли линейные менеджеры культивировать в своих подразделениях стремление к эффективности? Готовы ли рядовые сотрудники постоянно участвовать в гонке за повышение эффективности? Готов ли весь коллектив вступить в борьбу за результативность, буквально — с мировой энтропией*?» Если ответ положительный — дерзайте!

Рост эффективности каждого отдельного сотрудника повышает эффективность подразделения, компании в целом.

Как только количество высокорезультативных работников достигает критической отметки, наблюдается своего рода «квантовый скачок» повышения эффективности всей компании.

Переход на качественно новый уровень происходит в соответствии с законами диалектики, которые сформулировал великий немецкий философ Фридрих Гегель. Задача менеджеров — по возможности приблизить момент «перехода количества в качество».

Этот закон замечателен своей универсальностью: ему подчиняются не только процессы развития галактик и человеческих цивилизаций, но и профессиональный рост отдельного специалиста (например, эйчара).

Здесь важно наблюдать за собственной результативностью. Анализируйте ее: ежедневные результаты скажут вам об эффективности больше, чем тысяча книг, лекций, разговоров, за которыми не следует действий.

_________

* Энтропия (от греч. поворот, превращение) — 1) в теории информации: величина, характеризующая степень неопределенности системы; 2) в теории систем: величина, обратная уровню организации системы.

Источник: https://hr-portal.ru/article/upravlenie-effektivnostyu-krivaya-normalnogo-raspredeleniya

Нормальное распределение непрерывной случайной величины

Кривая нормального распределения

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Нормальное распределение: теоретические основы

Примерами случайных величин, распределённых по нормальному закону, являются рост человека, масса вылавливаемой рыбы одного вида.

Нормальность распределения означает следующее: существуют значения роста человека, массы рыбы одного вида, которые на интуитивном уровне воспринимаются как «нормальные» (а по сути — усреднённые), и они-то в достаточно большой выборке встречаются гораздо чаще, чем отличающиеся в бОльшую или меньшую сторону.

Нормальное распределение вероятностей непрерывной случайной величины (иногда — распределение Гаусса) можно назвать колоколообразным из-за того, что симметричная относительно среднего функция плотности этого распределения очень похожа на разрез колокола (красная кривая на рисунке выше).

Вероятность встретить в выборке те или иные значение равна площади фигуры под кривой и в случае нормального распределения мы видим, что под верхом «колокола», которому соответствуют значения, стремящиеся к среднему, площадь, а значит, вероятность, больше, чем под краями.

Таким образом, получаем то же, что уже сказано: вероятность встретить человека «нормального» роста, поймать рыбу «нормальной» массы выше, чем для значений, отличающихся в бОльшую или меньшую сторону.

В очень многих случаях практики ошибки измерения распределяются по закону, близкому к нормальному.

Остановимся ещё раз на рисунке в начале урока, на котором представлена функция плотности нормального распределения. График этой функции получен при рассчёте некоторой выборки данных в пакете программных средств STATISTICA.

На ней столбцы гистограммы представляют собой интервалы значений выборки, распределение которых близко (или, как принято говорить в статистике, незначимо отличаются от) к собственно графику функции плотности нормального распределения, который представляет собой кривую красного цвета.

На графике видно, что эта кривая действительно колоколообразная.

Нормальное распределение во многом ценно благодаря тому, что зная только математическое ожидание непрерывной случайной величины и стандартное отклонение, можно вычислить любую вероятность, связанную с этой величиной.

Функцию плотности нормального распределения непрерывной случайной величины можно найти по формуле:

,

где x — значение изменяющейся величины, — среднее значение, — стандартное отклонение, e=2,71828… — основание натурального логарифма, =3,1416…

Свойства функции плотности нормального распределения

  • для всех значений аргумента функция плотности положительна;
  • если аргумент стремится к бесконечности, то функция плотности стреится к нулю;
  • функция плотности симметрична относительно среднего значения: ;
  • наибольшее значение функции плотности — у среднего значения: ;
  • кривая функции плотности выпукла в интервале и вогнута на остальной части;
  • мода и медиана нормального распределения совпадает со средним значением;
  • при нормальном распределении коэффициенты ассиметрии и эксцесса равны нулю (подробнее рассмотрим это свойство в следующем параграфе о приближенном методе проверки нормальности распределения).

Изменения среднего значения перемещают кривую функции плотности нормального распределения в направлении оси Ox. Если возрастает, кривая перемещается вправо, если уменьшается, то влево.

Если меняется стандартное отклонение, то меняется высота вершины кривой. При увеличении стандартного отклонения вершина кривой находится выше, при уменьшении — ниже.

Уже в этом параграфе начнём решать практические задачи, смысл которых обозначен в заголовке. Разберём, какие возможности для решения задач предоставляет теория. Отправное понятие для вычисления вероятности попадания нормально распределённой случайной величины в заданный интервал — интегральная функция нормального распределения.

Интегральная функция нормального распределения:

.

Однако проблематично получить таблицы для каждой возможной комбинации среднего и стандартного отклонения. Поэтому одним из простых способов вычисления вероятности попадания нормально распределённой случайной величины в заданный интервал является использование таблиц вероятностей для стандартизированного нормального распределения.

Стандартизованным или нормированным называется нормальное распределение, среднее значение которого , а стандартное отклонение .

Функция плотности стандартизованного нормального распределения:

.

Интегральная функция стандартизованного нормального распределения:

.

На рисунке ниже представлена интегральная функция стандартизованного нормального распределения, график которой получен при рассчёте некоторой выборки данных в пакете программных средств STATISTICA. Собственно график представляет собой кривую красного цвета, а значения выборки приближаются к нему.

Для увеличения рисунка можно щёлкнуть по нему левой кнопкой мыши.

Стандартизация случайной величины означает переход от первоначальных единиц, используемых в задании, к стандартизованным единицам. Стандартизация выполняется по формуле

.

На практике все возможные значения случайной величины часто не известны, поэтому значения среднего и стандартного отклонения точно определить нельзя. Их заменяют средним арифметическим наблюдений и стандартным отклонением s. Величина z выражает отклонения значений случайной величины от среднего арифметического при измерении стандартных отклонений.

Открытый интервал

Таблица вероятностей для стандартизированного нормального распределения, которая есть практически в любой книге по статистике, содержит вероятности того, что имеющая стандартное нормальное распределение случайная величина Z примет значение меньше некоторого числа z. То есть попадёт в открытый интервал от минус бесконечности до z. Например, вероятность того, что величина Z меньше 1,5, равна 0,93319.

Пример 1. Предприятие производит детали, срок службы которых нормально распределён со средним значением 1000 и стандартным отклонением 200 часов.

Для случайно отобранной детали вычислить вероятность того, что её срок службы будет не менее 900 часов.

Решение. Введём первое обозначение:

— искомая вероятность.

Значения случайной величины находятся в открытом интервале. Но мы умеем вычислять вероятность того, что случайная величина примет значение, меньшее заданного, а по условию задачи требуется найти равное или большее заданного.

Это другая часть пространства под кривой плотности нормального распределения (колокола).

Поэтому, чтобы найти искомую вероятность, нужно из единицы вычесть упомянутую вероятность того, что случайная величина примет значение, меньше заданного 900:

Теперь случайную величину нужно стандартизировать.

Продолжаем вводить обозначения:

z = (X ≤ 900);

x = 900 — заданное значение случайной величины;

μ = 1000 — среднее значение;

σ = 200 — стандартное отклонение.

По этим данным условия задачи получаем:

.

По таблицам стандартизированной случайной величине (границе интервала) z = −0,5 соответствует вероятность 0,30854. Вычтем ее из единицы и получим то, что требуется в условии задачи:

.

Итак, вероятность того, что срок службы детали будет не менее 900 часов, составляет 69%.

Эту вероятность можно получить, используя функцию MS Excel НОРМ.РАСП (значение интегральной величины — 1):

P(X≥900) = 1 — P(X≤900) = 1 — НОРМ.РАСП(900; 1000; 200; 1) = 1 — 0,3085 = 0,6915.

О расчётах в MS Excel — в одном из последующих параграфах этого урока.

Пример 2. В некотором городе среднегодовой доход семьи является нормально распределённой случайной величиной со средним значением 300000 и стандартным отклонением 50000. Известно, что доходы 40 % семей меньше величины A. Найти величину A.

Решение. В этой задаче 40 % — ни что иное, как вероятность того, что случайная величина примет значение из открытого интервала, меньшее определённого значения, обозначенного буквой A.

Чтобы найти величину A, сначала составим интегральную функцию:

По условию задачи

μ = 300000 — среднее значение;

σ = 50000 — стандартное отклонение;

x = A — величина, которую нужно найти.

Составляем равенство

.

По статистическим таблицам находим, что вероятность 0,40 соответствует значению границы интервала z = −0,25.

Поэтому составляем равенство

и находим его решение:

A = 287300.

Ответ: доходы 40 % семей менее 287300.

Закрытый интервал

Во многих задачах требуется найти вероятность того, что нормально распределённая случайная величина примет значение в интервале от z1 до z2. То есть попадёт в закрытый интервал.

Для решения таких задач необходимо найти в таблице вероятности, соответствующие границам интервала, а затем найти разность этих вероятностей. При этом требуется вычитать меньшее значение из большего.

Примеры на решения этих распространённых задач — следующие, причём решить их предлагается самостоятельно, а затем можно посмотреть правильные решения и ответы.

Пример 3. Прибыль предприятия за некоторый период — случайная величина, подчинённая нормальному закону распределения со средним значением 0,5 млн. у.е. и стандартным отклонением 0,354. Определить с точностью до двух знаков после запятой вероятность того, что прибыль предприятия составит от 0,4 до 0,6 у.е.

Правильное решение и ответ.

Пример 4. Длина изготавливаемой детали представляет собой случайную величину, распределённую по нормальному закону с параметрами μ=10 и σ=0,071. Найти с точностью до двух знаков после запятой вероятность брака, если допустимые размеры детали должны быть 10±0,05.

Подсказка: в этой задаче помимо нахождения вероятности попадания случайной величины в закрытый интервал (вероятность получения небракованной детали) требуется выполнить ещё одно действие.

Правильное решение и ответ.

Функция

позволяет определить вероятность того, что стандартизованное значение Z не меньше -z и не больше +z, где z — произвольно выбранное значение стандартизованной случайной величины.

Нет времени вникать в решение? Можно заказать работу!

Приближенный метод проверки нормальности распределения

Приближенный метод проверки нормальности распределения значений выборки основан на следующем свойстве нормального распределения: коэффициент асимметрии β1 и коэффициент эксцесса β2 равны нулю.

Коэффициент асимметрии β1 численно характеризует симметрию эмпирического распределения относительно среднего.

Если коэффициент асимметрии равен нулю, то среднее арифметрического значение, медиана и мода равны: и кривая плотности распределения симметрична относительно среднего.

Если коэффициент асимметрии меньше нуля (β1  0), то среднее арифметическое больше медианы, а медиана, в свою очередь, больше моды () и кривая сдвинута влево (по сравнению с нормальным распределением).

Коэффициент эксцесса β2 характеризует концентрацию эмпирического распределения вокруг арифметического среднего в направлении оси Oy и степень островершинности кривой плотности распределения.

Если коэффициент эксцесса больше нуля, то кривая более вытянута (по сравнению с нормальным распределением) вдоль оси Oy (график более островершинный).

Если коэффициент эксцесса меньше нуля, то кривая более сплющена (по сравнению с нормальным распределением) вдоль оси Oy (график более туповершинный).

Коэффициент асимметрии можно вычислить с помощью функции MS Excel СКОС. Если вы проверяете один массив данных, то требуется ввести диапазон данных в одно окошко «Число».

Коэффициент эксцесса можно вычислить с помощью функции MS Excel ЭКСЦЕСС. При проверке одного массива данных также достаточно ввести диапазон данных в одно окошко «Число».

Итак, как мы уже знаем, при нормальном распределении коэффициенты асимметрии и эксцесса равны нулю.

Но что, если мы получили коэффициенты асимметрии, равные -0,14, 0,22, 0,43, а коэффициенты эксцесса, равные 0,17, -0,31, 0,55? Вопрос вполне справедливый, так как практически мы имеем дело лишь с приближенными, выборочными значениями асимметрии и эксцесса, которые подвержены некоторому неизбежному, неконтролируемому разбросу. Поэтому нельзя требовать строгого равенства этих коэффициентов нулю, они должны лишь быть достаточно близкими к нулю. Но что значит — достаточно?

Требуется сравнить полученные эмпирические значения с допустимыми значениями. Для этого нужно проверить следующие неравенства (сравнить значения коэффициентов по модулю с критическими значениями — границами области проверки гипотезы).

Для коэффициента асимметрии β1:

,

где

— квантиль стандартного нормального распределения уровня ,

— среднеквадратическое отклонение для выборки с числом наблюдений n.

Для коэффициента асимметрии β2:

,

где

— квантиль стандартного нормального распределения уровня ,

— среднеквадратическое отклонение для выборки с числом наблюдений n.

Так как коэффициенты асимметрии и эксцесса могут оказаться и положительными, и отрицательными, то в приближенном методе проверки нормальности распределения используется двусторонний квантиль стандартного нормального распределения; он задаёт интервал, в который случайная величина попадает с определённой вероятностью. Приведём значения двусторонних квантилей стандартного нормального распределения определённых уровней (слева — уровень, справа — значение квантиля):

  • 0,90: 1,645
  • 0,95: 1,960
  • 0,975: 2,241
  • 0,98: 2,326
  • 0,99: 2,576
  • 0,995: 2,807
  • 0,999: 3,291
  • 0,9995: 3,481
  • 0,9999: 3,891

Например, для выборки с числом наблюдений n = 50 и α = 0,05, пользуясь этими значениями и ранее приведёнными формулами, можно получить границу области принятия гипотезы для коэффициента асимметрии 0,62 и для коэффициента эксцесса 1,15.

Поэтому приведённые ранее примеры эмпирических значений коэффициента асимметрии -0,14, 0,22, 0,43 попадают в область принятия гипотезы. То же самое относится к значениям коэффициента эксцесса 0,17, -0,31, 0,55.

Следовательно, если получены такие эмпирические значения, то с вероятностью 95% данные выборки подчиняются нормальному закону распределения.

Нормальное распределение и расчёты в MS Excel

Значения функции плотности f(x) и интегральной функции F(x) нормального распределения можно вычислить при помощи функции MS Excel НОРМ.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).

MS Excel требует ввести следующие данные:

  • x — значение изменяющегося признака;
  • среднее значение;
  • стандартное отклонение;
  • интегральная — логическое значение: 0 — если нужно вычислить функцию плотности f(x) и 1 — если вероятность F(x).

Решить задачу самостоятельно, а затем посмотреть решение

Пример 5. Определить с точностью до двух знаков после запятой вероятность попадания при стрельбе в полосу шириной 3,5 м, если ошибки стрельбы подчиняются нормальному закону распределения со средним значением 0 и σ = 1,9.

Правильное решение и ответ.

Решим ещё одну задачу вместе

Пример 6. О случайной величине X известно, что она нормально распределена, а вероятности того, что она составит 10 или меньше и больше 25, соответственно и . Найти среднее значение (математическое ожидание) случайной величины и её дисперсию.

Решение. Используем данные в условии задачи вероятности:

Пользуясь статистическими таблицами, находим:

Составляем систему из полученных равенств:

Решая систему, находим:

.

Пройти тест по теме Теория вероятностей и математическая статистика

Начало темы «Теория вероятностей»

Действия над вероятностями Различные задачи на сложение и умножение вероятностей Формула полной вероятности Независимые испытания и формула Бернулли Распределение вероятностей дискретной случайной величины Распределение вероятностей непрерывной случайной величины Математическое ожидание и дисперсия случайной величины Биномиальное распределение дискретной случайной величины Распределение Пуассона дискретной случайной величины Равномерное распределение непрерывной случайной величины

Источник: https://function-x.ru/probabilities_distribution_normal.html

Нормальное распределение вероятностей

Кривая нормального распределения

Без преувеличения его можно назвать философским законом. Наблюдая за различными объектами и процессами окружающего мира, мы часто сталкиваемся с тем, что чего-то бывает мало, и что бывает норма:

Перед вами принципиальный вид функции плотности нормального распределения вероятностей, и я приветствую вас на этом интереснейшем уроке.

Какие можно привести примеры? Их просто тьма. Это, например, рост, вес людей (и не только), их физическая сила, умственные способности и т.д. Существует «основная масса» (по тому или иному признаку) и существуют отклонения в обе стороны.

Это различные характеристики неодушевленных объектов (те же размеры, вес). Это случайная продолжительность процессов, например, время забега стометровки или превращения смолы в янтарь. Из физики вспомнились молекулы воздуха: среди них есть медленные, есть быстрые, но большинство двигаются со «стандартными» скоростями.

Более того, даже дискретные распределения бывают близкИ к нормальному, и в конце урока мы раскроем важный секрет «нормальности». Но прежде, математика, математика, математика, которая в древности не зря считалась философией!

Непрерывная случайная величина , распределённая по нормальному закону, имеет функцию плотности  (не пугаемся) и однозначно определяется параметрами  и .

Данная функция получила фамилию некоронованного короля математики, и я не могу удержаться, чтобы не запостить:

Одну из таких купюр мне довелось лично держать в руках, и ещё будучи школьником я внимательно изучил функцию Гаусса. Педантичные немцы отобразили все её особенности (на картинке видно плохо), и мы с толком, с расстановкой приступаем к их немцев изучению.

Начнём с того, что для функции  выполнены свойства плотности вероятностей , а именно  (почему?) и , откуда следует, что нормально распределённая случайная величина достоверно примет одно из действительных значений. Теоретически – какое угодно, практически – узнаем позже.

Любопытно отметить, что сам по себе неопределённый интеграл  является неберущимся, однако указанный выше несобственный интеграл сходится и равен . Вычисления для простейшего случая  можно найти здесь, все же остальные варианты сводятся к нему с помощью линейной замены .

Следующие замечательные факты я тоже приведу без доказательства:

 – то есть, математическое ожидание нормально распределённой случайной величины в точности равно «а»,  а  среднее квадратическое отклонение в точности равно «сигме»: .

Эти значения выводятся с помощью общих формул математического ожидания и дисперсии, и желающие / нуждающиеся могут ознакомиться с подробными выкладками в учебной литературе, и совсем здОрово, если вам удастся провести их самостоятельно.

Ну а мы переходим к насущным практическим вопросам. Практики сегодня будет много, и она будет интересна не только «чайникам», но и более подготовленным читателям:

Пример 1

Нормально распределённая случайная величина задана параметрами . Записать её функцию плотности и построить график.

Несмотря на кажущуюся простоту задания, в нём существует немало тонкостей.

Первый момент касается обозначений. Они стандартные, и никаких вольностей: математическое ожидание обозначают буквой  (реже  или  («мю»)), а стандартное отклонение – буквой . Кстати, обратите внимание на формулировку: в условии ничего не сказано о сущности параметров «а» и «сигма», и несведущий человек может только догадываться, что это такое.

Решение начнём шаблонной фразой: функция плотности нормально распределённой случайной величины имеет вид  . В данном случае  и:

Первая, более лёгкая часть задачи выполнена. Теперь график. Вот на нём-то, на моей памяти, студентов «заворачивали» десятки раз, причём, многих неоднократно. По той причине, что график  обладает несколькими принципиальными особенностями, которые нужно обязательно отобразить на чертеже.

Сначала полная картина, затем комментарии:

Строим декартову систему координат. При выполнении чертежа от руки во многих случаях оптимален следующий масштаб:

по оси абсцисс: 2 тетрадные клетки = 1 ед.;

по оси ординат: 2 тетрадные клетки = 0,1 ед., при этом саму ось следует расположить из тех соображений, что в точке  функция достигает максимума, и вертикальная прямая  (на чертеже отсутствует) является линией симметрии графика.

И логично, что в первую очередь удобно найти максимум функции. В данном примере он находится в точке :

Отмечаем вершину графика (красная точка).

Далее вычислим значения функции при , а точнее только одно из них – в силу симметрии графика они равны:

Отмечаем синим цветом.

Внимание!  – это точки перегиба нормальной кривой. На интервале  график является выпуклым, а на крайних интервалах – вогнутым.

Далее отклоняемся от центра ещё на одно стандартное отклонение  и рассчитываем высоту:

Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.

На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота, и «залезать» за неё категорически нельзя!

При электронном оформлении решения график легко построить в Экселе, и неожиданно для самого себя я даже записал короткий видеоролик на эту тему. Но сначала поговорим о том, как меняется форма нормальной кривой в зависимости от значений  и .

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно.

Так, например, при  функция принимает вид  и наш график «переезжает» на 3 единицы влево – ровнехонько в начало координат:

Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная; её функция плотности  –  чётная, и график симметричен относительно оси ординат.

В случае изменения «сигмы» (при постоянном «а»), график «остаётся на месте», но меняет форму. При увеличении  он становится более низким и вытянутым, словно осьминог, растягивающий щупальца.

И, наоборот, при уменьшении  график становится более узким и высоким – получается «удивлённый осьминог».

Так, при уменьшении «сигмы» в два раза:  предыдущий график сужается и вытягивается вверх в два раза:

Всё в полном соответствии с геометрическими преобразованиями графиков.

Нормальное распределёние с единичным значением «сигма» называется нормированным, а если оно ещё и центрировано (наш случай), то такое распределение называют стандартным.

Оно имеет ещё более простую функцию плотности, которая уже встречалась в локальной теореме Лапласа: .

Стандартное распределение нашло широкое применение на практике, и очень скоро мы окончательно поймём его предназначение.

Ну а теперь смотрим кино:

Да, совершенно верно – как-то незаслуженно у нас осталась в тени функция распределения вероятностей. Вспоминаем её определение:
 – вероятность того, что случайная величина  примет значение, МЕНЬШЕЕ, чем переменная , которая «пробегает» все действительные значения до «плюс» бесконечности.

Внутри интеграла обычно используют другую букву, чтобы не возникало «накладок» с обозначениями, ибо здесь каждому значению  ставится в соответствие несобственный интеграл , который равен некоторому числу из интервала .

Почти все значения  не поддаются точному расчету, но как мы только что видели, с современными вычислительными мощностями с этим нет никаких трудностей. Так, для функции  стандартного распределения  соответствующая экселевская функция вообще содержит один аргумент:

=НОРМСТРАСП(z)

Раз, два – и готово:

На чертеже хорошо видно выполнение всех свойств функции распределения, и из технических нюансов здесь следует обратить внимание на горизонтальные асимптоты и точку перегиба .

Теперь вспомним одну из ключевых задач темы, а именно выясним, как найти –вероятность того, что нормальная случайная величина  примет значение из интервала .

Геометрически эта вероятность равна площади между нормальной кривой и осью абсцисс на соответствующем участке:

но каждый раз вымучивать приближенное значение   неразумно, и поэтому здесь рациональнее использовать «лёгкую» формулу:
.

! Вспоминает также, что

Тут можно снова задействовать Эксель, но есть пара весомых «но»: во-первых, он не всегда под рукой, а во-вторых, «готовые» значения , скорее всего, вызовут вопросы у преподавателя. Почему?

Об этом я неоднократно рассказывал ранее: в своё время (и ещё не очень давно) роскошью был обычный калькулятор, и в учебной литературе до сих пор сохранился «ручной» способ решения рассматриваемой задачи. Его суть состоит в том, чтобы стандартизировать значения «альфа» и «бета», то есть свести решение к стандартному распределению:
 

Примечание: функцию  легко получить из общего случая  с помощью линейной замены . Тогда  и:

и из проведённой замены как раз следует формула  перехода от значений  произвольного распределения – к соответствующим значениям  стандартного распределения.

Зачем это нужно? Дело в том, что значения  скрупулезно подсчитаны нашими предками и сведены в специальную таблицу, которая есть во многих книгах по терверу. Но ещё чаще встречается таблица значений , с которой мы уже имели дело в интегральной теореме Лапласа:

В силу очевидной нечётности функции Лапласа (), в таблице представлены её значения только для положительных «икс», и по причине симметрии нормального распределения этого оказывается достаточно. Итак, вероятность того, что нормальная случайная величина  с параметрами  и  примет значение из интервала , можно вычислить по формуле:

, где  – функция Лапласа.

Таким образом, наша задача становится чуть ли не устной! Порой, здесь хмыкают и говорят, что метод устарел. Может быть…, но парадокс состоит в том, что «устаревший метод» очень быстро приводит к результату! И ещё в этом заключена большая мудрость – если вдруг пропадёт электричество или восстанут машины, то у человечества останется возможность заглянуть в бумажные таблицы и спасти мир =)

Пример 2

Из пункта  ведётся стрельба из орудия вдоль прямой . Предполагается, что дальность полёта распределена нормально с математическим ожиданием 1000 м и средним квадратическим отклонением 5 м. Определить (в процентах) сколько снарядов упадёт с перелётом от 5 до 70м.

Классика жанра.

Решение: в задаче рассматривается нормально распределённая случайная величина  – дальность полёта снаряда, и по условию .

Так как речь идёт о перелёте за цель, то . Вычислим вероятность  – того, что снаряд упадёт в пределах этой дистанции.

Если в нашем распоряжении есть таблица значений функции , то используем формулу :

Для самопроверки можно задействовать экселевскую функцию =НОРМСТРАСП(z) или напрямую «забить»  и затем  в Пункт 9 расчётного макета.

Если же в нашем распоряжении есть таблица значений функции Лапласа , то решаем через неё:

Дробные значения традиционно округляем до 4 знаков после запятой, как это сделано в типовой таблице. И для контроля есть Пункт 5 макета.

Напоминаю, что , и во избежание путаницы всегда контролируйте, таблица КАКОЙ функции перед вашими глазами.

Ответ требуется дать в процентах, поэтому рассчитанную вероятность нужно умножить на 100 и снабдить результат содержательным комментарием:

– с перелётом от 5 до 70 м упадёт примерно 15,87% снарядов

Тренируемся самостоятельно:

Пример 3

Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратическим отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблется от 1,4 до 1,6 см.

В образце решения и далее я буду использовать функцию Лапласа, как самый распространённый вариант. Кстати, обратите внимание, что согласно формулировке, здесь можно включить концы интервала в рассмотрение. Впрочем, это не критично.

И уже в этом примере нам встретился особый случай – когда интервал  симметричен относительно математического ожидания.  В такой ситуации его можно записать в виде  и, пользуясь нечётностью функции Лапласа, упростить рабочую формулу:

Параметр «дельта» называют отклонением от математического ожидания, и двойное неравенство можно «упаковывать» с помощью модуля:

 – вероятность того, что значение случайной величины  отклонится от математического ожидания менее чем на .

Хорошо то решение, которое умещается в одну строчку:)
 – вероятность того, что диаметр наугад взятого подшипника отличается от 1,5 см не более чем на 0,1 см.

Результат этой задачи получился близким к единице, но хотелось бы ещё бОльшей надежности – а именно, узнать границы, в которых находится диаметр почти всех подшипников. Существует ли какой-нибудь критерий на этот счёт? Существует! На поставленный вопрос отвечает так называемое

правило «трех сигм»

Его суть состоит в том, что практически достоверным является тот факт, что нормально распределённая случайная величина  примет значение из промежутка .

И в самом деле, вероятность отклонения от матожидания менее чем на  составляет:
 или 99,73%

В «пересчёте на подшипники» – это 9973 штуки с диаметром от 1,38 до 1,62 см и всего лишь 27 «некондиционных» экземпляров.

В практических исследованиях правило «трёх сигм» обычно применяют в обратном направлении: если статистически установлено, что почти все значения исследуемой случайной величины укладываются в интервал длиной 6 стандартных отклонений, то появляются веские основания полагать, что эта величина распределена по нормальному закону. Проверка осуществляется с помощью теории статистических гипотез.

Продолжаем решать суровые советские задачи:

Пример 4

Случайная величина  ошибки взвешивания распределена по нормальному закону с нулевым математическим ожиданием и стандартным отклонением 3 грамма. Найти вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей по модулю 5 грамм.

Решение очень простое. По условию,  и сразу заметим, что при очередном взвешивании (чего-то или кого-то) мы почти 100% получим результат с точностью до 9 грамм. Но в задаче фигурирует более узкое отклонение  и по формуле :

 – вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей 5 грамм.

Ответ:

Прорешанная задача принципиально отличается от вроде бы похожего Примера 3 урока о равномерном распределении. Там была погрешность округления результатов измерений, здесь же речь идёт о случайной погрешности самих измерений.

Такие погрешности возникают в связи с техническими характеристиками самого прибора (диапазон допустимых ошибок, как правило, указывают в его паспорте), а также по вине экспериментатора – когда мы, например, «на глазок» снимаем показания со стрелки тех же весов.

Помимо прочих, существуют ещё так называемые систематические ошибки измерения. Это уже неслучайные ошибки, которые возникают по причине некорректной настройки или эксплуатации прибора.

Так, например, неотрегулированные напольные весы могут стабильно «прибавлять» килограмм, а продавец систематически обвешивать покупателей. Или не систематически ведь можно обсчитать.

Однако, в любом случае, случайной такая ошибка не будет, и её матожидание отлично от нуля.

…срочно разрабатываю курс по подготовке продавцов =)

Самостоятельно решаем обратную задачу:

Пример 5

Диаметр валика – случайная нормально распределенная случайная величина, среднее квадратическое отклонение ее равно  мм. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью  попадет длина диаметра валика.

Пункт 5* расчётного макета в помощь. Обратите внимание, что здесь не известно математическое ожидание, но это нисколько не мешает решить поставленную задачу.

И экзаменационное задание, которое я настоятельно рекомендую для закрепления материала:

Пример 6

Нормально распределенная случайная величина  задана своими параметрами  (математическое ожидание) и  (среднее квадратическое отклонение). Требуется:

а) записать плотность вероятности и схематически изобразить ее график;
б) найти вероятность того, что  примет значение из интервала  ;
в) найти вероятность того, что  отклонится по модулю от  не более чем на ;
г) применяя правило «трех сигм», найти значения случайной величины .

Такие задачи предлагаются повсеместно, и за годы практики мне их довелось решить сотни и сотни штук. Обязательно попрактикуйтесь в ручном построении чертежа и использовании бумажных таблиц 😉

Ну а я разберу пример повышенной сложности:

Пример 7

Плотность распределения вероятностей случайной величины  имеет вид . Найти , математическое ожидание , дисперсию , функцию распределения , построить графики плотности и функции распределения, найти .

Решение: прежде всего, обратим внимание, что в условии ничего не сказано о характере случайной величины. Само по себе присутствие экспоненты ещё ничего не значит: это может оказаться, например, показательное или вообще произвольное непрерывное распределение. И поэтому «нормальность» распределения ещё нужно обосновать:

Так как функция  определена при любом действительном значении , и её можно привести к виду , то случайная величина  распределена по нормальному закону.

Приводим. Для этого выделяем полный квадрат и организуем трёхэтажную дробь:
Обязательно выполняем проверку, возвращая показатель в исходный вид:
, что мы и хотели увидеть.

Таким образом:
 – по правилу действий со степенями «отщипываем» . И здесь можно сразу записать очевидные числовые характеристики:

Теперь найдём значение параметра . Поскольку множитель нормального распределения имеет вид  и , то:
, откуда выражаем  и подставляем в нашу функцию:
, после чего ещё раз пробежимся по записи глазами и убедимся, что полученная функция имеет вид .

Построим график плотности:

и график функции распределения :

Если под рукой нет Экселя и даже обычного калькулятора, то последний график легко строится вручную! В точке  функция распределения принимает значение  и здесь находится перегиб графика (малиновая точка) Кроме того, для более или менее приличного чертежа желательно найти ещё хотя бы пару точек. Берём традиционное значение  и стандартизируем его по формуле . Далее с помощью таблицы значений функции Лапласа находим:  – жёлтая точка на чертеже. С симметричной оранжевой точкой никаких проблем:  и:
.

После чего аккуратно проводим интегральную кривую, не забывая о перегибе и двух горизонтальных асимптотах.

Да, и ещё нужно вычислить:
 – вероятность того, что случайная величина  примет значение из данного отрезка.

Ответ:

Но этим, конечно, всё дело не ограничивается! Дополнительные примеры, причём довольно творческие, можно найти в тематической pdf-книжке.

И в заключение урока обещанный секрет:

понятие о центральной предельной теореме

которую также называют теоремой Ляпунова. Её суть состоит в том, что если случайная величина  является суммой очень большого числа взаимно независимых случайных величин , влияние каждой из которых на всю сумму ничтожно мало, то  имеет распределение, близкое к нормальному.

В окружающем мире условие теоремы Ляпунова выполняется очень часто, и поэтому нормальное распределение (близкое к нему) и встречается буквально на каждом шагу.

Так, например, молекул воздуха очень и очень много, и каждая из них своим движением оказывает ничтожно малое влияние на всю совокупность. Поэтому скорость молекул воздуха распределена нормально.

Большая популяция некоторых особей. Каждая из них (или подавляющее большинство) оказывает несущественное влияние на жизнь всей популяции, следовательно, длина их лапок тоже распределена по нормальному закону.

Теперь вернёмся к знакомой задаче, где проводится  независимых испытаний, в каждом из которых некое событие  может появиться с постоянной вероятностью .

Эти испытания можно считать попарно независимым случайными величинами , и при достаточно большом значении «эн» биномиальное распределение случайной величины – числа появлений события  в  испытаниях – очень близко к нормальному.

Уже при  и  в многоугольнике биномиального распределения хорошо просматривается нормальная кривая:

И чем больше , тем ближе будет сходство. Вероятность  может быть и другой, но не слишком малой.

Именно этот факт мы и использовали в теоремах Лапласа – когда приближали  биномиальные вероятности соответствующими значениями функций нормального распределения.

Вот такие вот пироги.

Необычайно интересной, и я бы даже сказал «сочной» получилась эта статья, что бывает далеко не всегда, но всегда вдохновляет на новое творчество! Надеюсь, вам тоже понравилось, и вы освоили весь материал «на одном дыхании».

До скорых встреч!

Решения и ответы:

Пример 3. Решение: т.к. случайная величина  (диаметр подшипника) распределена нормально, то используем формулу , где  – функция Лапласа. В данном случае:

 – вероятность того, что диаметр  наугад взятого подшипника будет находиться в пределах от 1,4 до 1,6 см.

Ответ:

Пример 5. Решение:используем формулу: .
В данной задаче , таким образом:

откуда находим:
 
Длина искомого интервала составляет

Ответ: 20 мм

Пример 6. Решение:функция плотности нормально распределённой случайной величины имеет вид , где  – математическое ожидание,  – стандартное отклонение.

В данном случае , следовательно:

Выполним чертёж:

! Примечание: несмотря на то, что условие допускает схематическое построение графика, на чертеже обязательно отображаем все его принципиальные особенности, в частности, на забываем о перегибах в точках .

б) Используем формулу , где  – функция Лапласа.
В данной задаче :

 – вероятность того, что случайная величина  примет значение из данного интервала.

в) Используем формулу  для :
 – вероятность того, что значение случайной величины   отклонится от её математического ожидания не более чем на 2.

г) Согласно правилу «трех сигм», практически все значения (99,73%) нормально распределенной случайной  величины входят в интервал . В данном случае:

 – искомый интервал.

Ответ: а) , б) , в) , г)

Емелин Александр

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Профессиональная помощь по любому предмету – Zaochnik.com

Источник: http://www.mathprofi.ru/normalnoe_raspredelenie_veroyatnostei.html

Нормальное распределение, нормальная кривая

Кривая нормального распределения

Определение 1

Случайная величина $X$ имеет нормальное распределение, если плотность её распределения определяется формулой:

\[\varphi \left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }e{\frac{-{(x-a)}2}{2{\sigma }2}}\]

где $a?R$, а $\sigma >0$ — константы.

Разберем теперь, какой смысл имеют константы $a$ и $\sigma $.

Для этого попробуем найти числовые характеристики для данного распределения. Начнем с математического ожидания.

Сделаем замену: $\frac{x-a}{\sigma }=t,\ x=\sigma t+a,\ dx=\sigma dt$.

$\frac{1}{\sqrt{2\pi }}\int\limits{+\infty }_{-\infty }{e{\frac{-t2}{2}}dt}$ — это функция плотности распределения некоторой случайной величины, следовательно:

Из этого сего получим:

!!! То есть константа $a$ в определении 1 — это математическое ожидание данного распределения.

Найдем теперь дисперсию:

Сделаем замену: $\frac{x-a}{\sigma }=t,\ x=\sigma t+a,\ dx=\sigma dt$.

Используя вычисления неопределенного интеграла и тот факт, что $\frac{1}{\sqrt{2\pi }}\int\limits{+\infty }_{-\infty }{e{\frac{-t2}{2}}dt}=1$, то есть $\int\limits{+\infty }_{-\infty }{e{\frac{-t2}{2}}dt}=\sqrt{2\pi }$, получим:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Найдем теперь среднее квадратическое отклонение:

!!! То есть константа $\sigma $ в определении 1 — это среднее квадратическое отклонение данного распределения.

Нормальная кривая

Определение 2

Нормальной кривой (или кривой Гаусса) называется график функции плотности нормального распределения $\varphi (x)$

Исследуем данную функцию и определим вид ее графика:

  1. Область определения: $\left(-\infty ,+\infty \right)$.

  2. Область значения: $(0,\ \frac{1}{\sqrt{2\pi }\sigma }]$.

  3. $\varphi \left(x\right)>0,$ график функции расположен выше оси $Ox)$

  4. При $x=0,$ $\varphi \left(0\right)=\frac{1}{\sqrt{2\pi }\sigma }e{\frac{-{(0-a)}2}{2{\sigma }2}}=\frac{1}{\sqrt{2\pi }\sigma }e{\frac{-a2}{2{\sigma }2}}$.\

  5. $\varphi \left(x\right)$ непрерывна на всей области определения.

  6. $\varphi '\left(x\right)={\left(\frac{1}{\sqrt{2\pi }\sigma }e{\frac{-{\left(x-a\right)}2}{2{\sigma }2}}\right)}'=-\frac{x-a}{\sqrt{2\pi }{\sigma }3}\cdot e{\frac{-{\left(x-a\right)}2}{2{\sigma }2}}$

Точка $(a,\ \frac{1}{\sqrt{2\pi }\sigma })$ — точка максимума.

Функция $\varphi \left(x\right)$ убывает, при $x>a$, и возрастает, при $x

  1. График симметричен относительно прямой $x=a$.

  2. $\varphi ''\left(x\right)={\left(-\frac{x-a}{\sqrt{2\pi }{\sigma }3}\cdot e{\frac{-{\left(x-a\right)}2}{2{\sigma }2}}\right)}'=-\frac{1}{\sqrt{2\pi }{\sigma }3}\cdot e{\frac{-{\left(x-a\right)}2}{2{\sigma }2}}\cdot \left(1-\frac{{\left(x-a\right)}2}{{\sigma }2}\right)$

Функция $\varphi \left(x\right)$ имеет точки перегиба при $x=a\pm \sigma $.

  1. Примерный вид кривой (рис. 1):

Рисунок 1. График плотности нормального распределения.

Пример задач на нормальное распределение вероятности

Пример 1

Нормальное распределение вероятности задана следующей функцией плотности распределения:

\[\varphi \left(x\right)=\frac{1}{0,3\sqrt{2\pi }}e{\frac{-{(x-2)}2}{2{\sigma }2}}\]

Найдем математическое ожидание, дисперсию и среднее квадратическое отклонение.

Решение:

Используя определение 1 сразу найдем

Математическое ожидание: $M\left(X\right)=a=2$.

Среднее квадратическое распределение: $\sigma \left(X\right)=\sigma =0,3$.

Тогда получим, что дисперсия: $D\left(X\right)={\sigma }2$=0,09.

Пример 2

Длина стержня $X$ представляет собой случайную непрерывную величину. $X$ распределена по нормальному закону распределения среднее значение которого равно $30$ мм, а среднее квадратическое отклонение равно $0,2$ мм. Найти плотность распределения такой случайной величины и построить её график:

Решение:

Из условия имеем: $a=30,\ \sigma =0,2$.

Тогда по определению 1, получим:

\[\varphi \left(x\right)=\frac{1}{0,2\sqrt{2\pi }}e{\frac{-{(x-30)}2}{0,08}}\]

Найдем точку максимума: $\left(a,\ \frac{1}{\sqrt{2\pi }\sigma }\right)=\left(30,\frac{1}{0,2\sqrt{2\pi }}\right)$

График имеет вид:

Рисунок 2.

Источник: https://spravochnick.ru/matematika/normalnoe_raspredelenie/normalnoe_raspredelenie_normalnaya_krivaya/

Одномерное нормальное распределение

Нормальное распределение имеет плотность::

      (*)

В этой формуле ,  фиксированные параметры,  – среднее, – стандартное отклонение.

Графики плотности при различных параметрах приведены ниже.

Характеристическая функция нормального распределения имеет вид:

Дифференцируя характеристическую функцию и полагая t = 0, получаем моменты любого порядка.

Кривая плотности нормального распределения симметрична относительно  и имеет в этой точке единственный максимум, равный 

Параметр стандартного отклонения  меняется в пределах от 0 до ∞.

Среднее  меняется в пределах от -∞ до +∞.

При увеличении параметра  кривая растекается вдоль оси х, при стремлении  к 0 сжимается вокруг среднего значения (параметр  характеризует разброс, рассеяние).

При изменении  кривая сдвигается вдоль оси х (см. графики).

Варьируя параметры  и , мы получаем разнообразные модели случайных величин, возникающие в телефонии.

Типичное применение нормального закона в анализе, например, телекоммуникационных данных – моделирование сигналов, описание шумов, помех, ошибок, трафика.

Графики одномерного нормального распределения

Рисунок 1. График плотности нормального распределения: среднее равно 0, стандартное отклонение 1

Рисунок 2. График плотности стандартного нормального распределения с областями, содержащими 68% и 95% всех наблюдений

Рисунок 3. Графики плотностей нормальных распределений c нулевым средним и разными отклонениями (=0.5, =1, =2)

Рисунок 4 Графики двух нормальных распределений N(-2,2) и N(3,2).

Заметьте, центр распределения сдвинулся при изменении параметра .

Замечание

В программе STATISTICA под обозначением N(3,2) понимается нормальный или гауссов закон с параметрами: среднее  = 3 и стандартное отклонение =2.

В литературе иногда второй параметр трактуется как дисперсия, т.е. квадрат стандартного отклонения.

Вычисления процентных точек нормального распределения с помощью вероятностного калькулятора STATISTICA

С помощью вероятностного калькулятора STATISTICA можно вычислить различные характеристики распределений, не прибегая к громоздким таблицам, используемым в старых книгах.

Шаг 1. Запускаем Анализ / Вероятностный калькулятор / Распределения.

В разделе распределения выберем нормальное.

Рисунок 5. Запуск калькулятора вероятностных распределений

Шаг 2. Указываем интересующие нас параметры.

Например, мы хотим вычислить 95% квантиль нормального распределения со средним 0 и стандартным отклонением 1.

Укажем эти параметры в полях калькулятора (см. поля калькулятора среднее и стандартное отклонение).

Введем параметр p=0,95.

Галочка «Обратная ф.р». отобразится автоматически. Поставим галочку «График».

Нажмем кнопку «Вычислить» в правом верхнем углу.

Рисунок 6. Настройка параметров

Шаг 3. В поле Z получаем результат: значение квантиля равно 1,64 (см. следующее окно).

Рисунок 7. Просмотр результата работы калькулятора

Далее автоматически появится окно с графиками плотности и функции распределения нормального закона:

Рисунок 8. Графики плотности и функции распределения. Прямая x=1,644485

Рисунок 9. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=-1.5, x=-1, x=-0.5, x=0

Рисунок 10. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=0.5, x=1, x=1.5, x=2 

Оценка параметров нормального распределения

Значения нормального распределения можно вычислить с помощью интерактивного калькулятора.

Двумерное нормальное распределение

Одномерное нормальное распределение естественно обобщается на двумерное нормальное распределение.

Например, если вы рассматриваете сигнал только в одной точке, то вам достаточно одномерного распределения, в двух точках – двумерного, в трех точках – трехмерного и т.д.

Общая формула для двумерного нормального распределения имеет вид:

Где  – парная корреляция между X1 и X2;

– среднее и стандартное отклонение переменной X1 соответственно;

– среднее и стандартное отклонение переменной X2 соответственно.

Если случайные величины Х1 и Х2 независимы, то корреляция равна 0,  = 0,  соответственно средний член в экспоненте зануляется, и мы имеем:

f(x1,x2) = f(x1)*f(x2)

Для независимых величин двумерная плотность распадается в произведение двух одномерных плотностей.

Графики плотности двумерного нормального распределения

Рисунок 11. График плотности двумерного нормального распределения (нулевой вектор средних, единичная ковариационная матрица)

Рисунок 12. Сечение графика плотности двумерного нормального распределения плоскостью z=0.05

Рисунок 13. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной)

Рисунок 14. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной) плоскостью z= 0.05

Рисунок 15. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной)

Рисунок 16. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной) плоскостью z=0.05

Рисунок 17. Сечения графиков плотностей двумерного нормального распределения плоскостью z=0.05

Для лучшего понимания двумерного нормального распределения попробуйте решить следующую задачу.

Задача. Посмотрите на график двумерного нормального распределения. Подумайте, можно ли его представить, как вращение графика одномерного нормального распределения? Когда нужно применить прием деформации?

Читайте далее — многомерное нормальное распределение

Связанные определения:
Cтандартное нормальное распределение
Критерий Колмогорова-Смирнова
Нормальное распределение
Шапиро-Уилка W критерий

В начало

портала

Источник: http://statistica.ru/theory/normalnoe-raspredelenie/

Book for ucheba
Добавить комментарий